Statistical tests for spatial nonstationarity based on the geographically weighted regression model
نویسندگان
چکیده
Geographically weighted regression (GWR) is a way of exploring spatial nonstationarity by calibrating a multiple regression model which allows different relationships to exist at different points in space. Nevertheless, formal testing procedures for spatial nonstationarity have not been developed since the inception of the model. In this paper the authors focus mainly on the development of statistical testing methods relating to this model. Some appropriate statistics for testing the goodness of fit of the GWR model and for testing variation of the parameters in the model are proposed and their approximated distributions are investigated. The work makes it possible to test spatial nonstationarity in a conventional statistical manner. To substantiate the theoretical arguments, some simulations are run to examine the power of the statistics for exploring spatial nonstationarity and the results are encouraging. To streamline the model, a stepwise procedure for choosing important independent variables is also formulated. In the last section, a prediction problem based on the GWR model is studied, and a confidence interval for the true value of the dependent variable at a new location is also established. The study paves the path for formal analysis of spatial nonstationarity on the basis of the GWR model. DOI:10.1068/a3162
منابع مشابه
Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity
model which allows diferent relationships to exist at diferent points in space. This technique is loosely based on kernel regression. The method itself is introduced and related issues such as the choice of a spatial weighting function are discussed. Following this, a series of related statistical tests are considered which can be described generally as tests f o r spatial nonstationarity. Usin...
متن کاملMapping the results of local statistics: Using geographically weighted regression.
The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity...
متن کاملNonstationarity in regression-based spatial interpolation models
The existence of nonstationarity, or spatial variability in geographical relationships, is a topic that has received some attention in the geographical literature in recent years. Its effect in regression-based spatial interpolation methods, however, remains an open research question. In order to explore this question, the paper describes a general regression model which can be used to derive a...
متن کاملMapping the Results of Geographically Weighted Regression
Geographically weighted regression (GWR) is a local spatial statistical technique for exploring spatial nonstationarity. Previous approaches to mapping the results of GWR have primarily employed an equal step classification and sequential no-hue colour scheme for choropleth mapping of parameter estimates. This cartographic approach may hinder the exploration of spatial nonstationarity by inadeq...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کامل